Fourier Spectrum from a 2nd-Order Linear Constant-Coefficient Ordinary Differential Equation with Sinusoidal Forcing
by Mike Martin

Consider the following initial-value problem:

a y '' (t) + b y ' (t) + c y (t) = Fo cos (ω (t - δ) )

y (0) = yo, y ' (0) = vo

The user inputs values for the parameters a, b, c, Fo, ω, δ, yo, vo, T, and N. Note that T represents the interval, [0, T], upon which the initial-value problem is solved and N is the number of sample points of that solution. The first graph is that of the solution signal and the second graph is that of its Fouler spectrum.

Enter in the values of the parameters, then press the "Visualize" button.

a =

b =

c =

Fo =

ω =

δ =

yo =

vo =

T =

N =